Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
Vielen Dank für Ihre Unterstützung!
Validation Towards Realistic Synthetic Datasets in Production Planning
Tagungsband
For large-scale simulations, a sufficient data amount is required. Despite an increasing data availability, it is still challenging to gather large-scale datasets, which are comprehensive, correct, accessible, and realistic, to validate new algorithms and models. An alternative is the use of synthetic data. Thus, we propose a novel methodology to generate realistic datasets. Based upon the statistical properties of real-world data, synthetic datasets are generated by ML models and filtered for anomalous values. The generated datasets are then compared to find the most suitable one. For this validation procedure, a modified Hopfield neural network model is extended to enable an analysis of sequences and to derive a comparison metric. The method demonstrates its applicability by providing an in-depth comparison of all tested data generators using a real-world dataset of a mid-size manufacturing company, whereby transformer-based generators proved most suitable. More diverse use cases should be evaluated in future research.