Surface modeling and chemical solution deposition of SrO(SrTiO3)(n) Ruddlesden-Popper phases Artikel uri icon

Open Access

  • false

Peer Reviewed

  • true

Abstract

  • Strontium titanate (STO) is a preferred substrate material for functional oxide growth, whose surface properties can be adjusted through the presence of Ruddlesden-Popper (RP) phases. Here, density functional theory (DFT) is used to model the (1 0 0) and (0 0 1) surfaces of SrO(SrTiO3)(n) RP phases. Relaxed surface structures, electronic properties and stability relations have been determined. In contrast to pure STO, the near-surface SrO-OSr stacking fault can be employed to control surface roughness by adjusting SrO and TiO2 surface rumpling, to stabilize SrO termination in an SrO-rich surrounding or to increase the band gap in the case of TiO2 termination. RP thin films have been epitaxially grown on (0 0 1) STO substrates by chemical solution deposition. In agreement with DFT results, the fraction of particular RP phases n = 1-3 changes with varying heating rate and molar ratio Sr:Ti. This is discussed in terms of bulk formation energy. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.