Berechnungen auf dem Rotationsellipsoid uri icon

Open Access

  • false

Peer Reviewed

  • false

Abstract

  • Nur bei sehr kleinräumigen geodätischen Aufgaben kann die Erdkrümmung vernachlässigt werden. Als Näherung für die unregelmäßige Erdfigur verwendet man heute bei sehr vielen geodätischen Aufgaben ein Rotationsellipsoid. Zunächst werden die geometrischen Eigenschaften des Rotationsellipsoids beleuchtet, hier vor allem die Krümmungsverhältnisse der Ellipsoidfläche. Die Umrechnung zwischen Breiten- und Längengraden sowie geozentrischen und topozentrischen kartesischen Koordinaten wird erläutert. Als wichtigste Ellipsoidflächenkurve wird die geodätische Linie eingeführt. Für diese Kurve werden Berechnungsverfahren aus auf die Ellipsoidfläche reduzierten räumlichen Messwerten vorgestellt, hier vor allem das Verfahren der Integralformeln. Zur Verebnung des Ellipsoids dient heute die winkeltreue Gaußsche Abbildung als Grundlage für Gauß-Krüger- und UTM-Koordinatensysteme. Umrechnungen zwischen diesen und ellipsoidischen Koordinaten werden erläutert. Zur praktischen Arbeit mit diesen Koordinaten müssen Meridiankonvergenzen sowie Punkt-, Linien- und Flächenmaßstäbe berechnet werden, wofür ebenfalls Formeln angegeben sind.