Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
Vielen Dank für Ihre Unterstützung!
Comparison of sum choice number with chromatic sum
Artikel
Let G = (V, E) be a simple graph and for every vertex v is an element of V let L(v) be a set (list) of available colors. The graph G is called L-colorable if there is a proper coloring yo of the vertices with phi(v) is an element of L(v) for all v is an element of V. A function f : V -> N is called a choice function of G if G is L-colorable for every list assignment L with vertical bar L(v)vertical bar = f (v) for all v is an element of V. Let size(f ) = Sigma(v is an element of V) f (v) and define the sum choice number chi(sc)(G) as the minimum of size(f ) over all choice functions f of G.
The chromatic sum Sigma(G) of G is the minimum sum of colors taken over all possible proper colorings of G.
In this paper we consider the functions g(n) = max{chi(sc )(G)/Sigma(G) : Sigma(G) = n} and h(n) = max{chi(sc)(G)/Sigma(G) : vertical bar V(G)vertical bar = n}. We conjecture g(n) = circle minus(logn), h(n) = circle minus(logn), and g(n) < h(n) for all n. We present lower and upper bounds for g(n) and h(n) and partial proofs of the conjectures. (C) 2021 Elsevier B.V. All rights reserved.