Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
Vielen Dank für Ihre Unterstützung!
ALWars: Combat-Based Evaluation of Active Learning Strategies
The demand for annotated datasets for supervised machine learning (ML) projects is growing rapidly. Annotating a dataset often requires domain experts and is a timely and costly process. A premier method to reduce this overhead drastically is Active Learning (AL). Despite a tremendous potential for annotation cost savings, AL is still not used universally in ML projects. The large number of available AL strategies has significantly risen during the past years leading to an increased demand for thorough evaluations of AL strategies. Existing evaluations show in many cases contradicting results, without clear superior strategies. To help researchers in taming the AL zoo we present ALWARs: an interactive system with a rich set of features to compare AL strategies in a novel replay view mode of all AL episodes with many available visualization and metrics. Under the hood we support a rich variety of AL strategies by supporting the API of the powerful AL framework ALiPy [21], amounting to over 25 AL strategies out-of-the-box.