Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
A (graph) property 𝒫 is a class of simple finite graphs closed under isomorphisms. In this paper we consider generalizations of sum list colorings of graphs with respect to properties 𝒫.
If to each vertex
of a graph
a list
) of colors is assigned, then in an (
𝒫)-coloring of
every vertex obtains a color from its list and the subgraphs of
induced by vertices of the same color are always in 𝒫. The 𝒫-sum choice number
of
is the minimum of the sum of all list sizes such that, for any assignment
of lists of colors with the given sizes, there is always an (
𝒫)-coloring of
We state some basic results on monotonicity, give upper bounds on the 𝒫-sum choice number of arbitrary graphs for several properties, and determine the 𝒫-sum choice number of specific classes of graphs, namely, of all complete graphs, stars, paths, cycles, and all graphs of order at most 4.