Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
Vielen Dank für Ihre Unterstützung!
Facial list colourings of plane graphs
Wissenschaftlicher Artikel
Let G = (V, E, F) be a connected plane graph, with vertex set V, edge set E, and face set F. For X is an element of {V, E,F,V boolean OR E,V boolean OR F,E boolean OR E,V boolean OR E boolean OR F}, two distinct elements of X are facially adjacent in G if they are incident elements, adjacent vertices, adjacent faces, or facially adjacent edges (edges that are consecutive on the boundary walk of a face of G). A list k-colouring is facial with respect to X if there is a list k-colouring of elements of X such that facially adjacent elements of X receive different colours. We prove that every plane graph G = (V, E, F) has a facial list 4-colouring with respect to X = E, a facial list 6-colouring with respect to X is an element of {V boolean OR E, E boolean OR F}, and a facial list 8-colouring with respect to X = V boolean OR E boolean OR F. For plane triangulations, each of these results is improved by one and it is tight. These results complete the theorem of Thomassen that every plane graph has a (facial) list 5-colouring with respect to X is an element of {V, F} and the theorem of Wang and Lih that every simple plane graph has a (facial) list 7-colouring with respect to X = V boolean OR F. (C) 2016 Elsevier B.V. All rights reserved.