Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
A graph
G =
G(
V,
E) with lists
L(
v), associated with its vertices
v ∈
V, is called
L-list colourable if there is a proper vertex colouring of
G in which the colour assigned to a vertex
v is chosen from
L(
v). We say
G is
k-
choosable if there is at least one
L-list colouring for every possible list assignment
L with ∥
L(
v)∥ =
k ∀
v ∈
V(
G).
Now, let an arbitrary vertex
v of
G be coloured with an arbitrary colour
f of
L(
v). We investigate whether the colouring of
v can be continued to an
L-list colouring of the whole graph.
G is called
free k-choosable if such an
L-list colouring exists for every list assignment
L (∥
L(
v)∥ =
k ∀
v ∈
V(
G)), every vertex
v and every colour
f ∈
L(
v). We prove the equivalence of the well-known conjecture of Erdős et al. (1979): “Every planar graph is 5-choosable” with the following conjecture: “Every planar graph is free 5-choosable”.