Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
In this paper we discuss some basic properties of
k
-list critical graphs. A graph
G
is
k
-list critical if there exists a list assignment
L
for
G
with
|
L
(
v
)
|
=
k
−
1
for all vertices
v
of
G
such that every proper subgraph of
G
is
L
-colorable, but
G
itself is not
L
-colorable. This generalizes the usual definition of a
k
-chromatic critical graph, where
L
(
v
)
=
{
1
,
…
,
k
−
1
}
for all vertices
v
of
G
. While the investigation of
k
-critical graphs is a well established part of coloring theory, not much is known about
k
-list critical graphs. Several unexpected phenomena occur, for instance a
k
-list critical graph may contain another one as a proper induced subgraph, with the same value of
k
. We also show that, for all
2
≤
p
≤
k
, there is a minimal
k
-list critical graph with chromatic number
p
. Furthermore, we discuss the question, for which values of
k
and
n
is the complete graph
K
n
k
-list critical. While this is the case for all
5
≤
k
≤
n
,
K
n
is not 4-list critical if
n
is large.