Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
Vielen Dank für Ihre Unterstützung!
On list critical graphs
Wissenschaftlicher Artikel
In this paper we discuss some basic properties of
k
-list critical graphs. A graph
G
is
k
-list critical if there exists a list assignment
L
for
G
with
|
L
(
v
)
|
=
k
−
1
for all vertices
v
of
G
such that every proper subgraph of
G
is
L
-colorable, but
G
itself is not
L
-colorable. This generalizes the usual definition of a
k
-chromatic critical graph, where
L
(
v
)
=
{
1
,
…
,
k
−
1
}
for all vertices
v
of
G
. While the investigation of
k
-critical graphs is a well established part of coloring theory, not much is known about
k
-list critical graphs. Several unexpected phenomena occur, for instance a
k
-list critical graph may contain another one as a proper induced subgraph, with the same value of
k
. We also show that, for all
2
≤
p
≤
k
, there is a minimal
k
-list critical graph with chromatic number
p
. Furthermore, we discuss the question, for which values of
k
and
n
is the complete graph
K
n
k
-list critical. While this is the case for all
5
≤
k
≤
n
,
K
n
is not 4-list critical if
n
is large.