Die Einführung des VIVO-Systems an der HTWD befindet sich derzeit in der Testphase. Daher kann es noch zu anwendungsseitigen Fehlern kommen. Sollten Sie solche Fehler bemerken, können Sie diese gerne >>hier<< melden.
Sollten Sie dieses Fenster schließen, können Sie über die Schaltfläche "Feedback" in der Fußleiste weiterhin Meldungen abgeben.
Vielen Dank für Ihre Unterstützung!
A computational model of self-organized shape dynamics of active surfaces in fluids
Artikel
Mechanochemical processes on surfaces such as the cellular cortex or
epithelial sheets, play a key role in determining patterns and shape changes of
biological systems. To understand the complex interplay of hydrodynamics and
material flows on such active surfaces requires novel numerical tools. Here, we
present a finite-element method for an active deformable surface interacting
with the surrounding fluids. The underlying model couples surface and bulk
hydrodynamics to surface flow of a diffusible species which generates active
contractile forces. The method is validated with previous results based on
linear stability analysis and shows almost perfect agreement regarding
predicted patterning. Away from the linear regime we find rich non-linear
behavior, such as the presence of multiple stationary states. We study the
formation of a contractile ring on the surface and the corresponding shape
changes. Finally, we explore mechanochemical pattern formation on various
surface geometries and find that patterning strongly adapts to local surface
curvature. The developed method provides a basis to analyze a variety of
systems that involve mechanochemical pattern formation on active surfaces
interacting with surrounding fluids.